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Abstract

In this note, the stability and chaotic motions of a standing pipe conveying fluid is studied and further compared with

that of a hanging system developed by Jin [1]. The standing pipe involves elastic support and motion-limiting constraints,

producing a nonlinear force on the pipe as the motion becomes large. Based on numerical calculations, bifurcation

diagram, time trace and phase portrait of the oscillations are obtained. It is shown that the dynamics of the standing pipe is

much richer than that of the hanging system. The effect of elastic spring stiffness on the global dynamics of the standing

pipe conveying fluid is also discussed.

r 2006 Elsevier Ltd. All rights reserved.
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Because of its importance in engineering, the dynamics of pipes conveying fluid has been investigated widely
by many investigators. Jin [1] has investigated the stability and chaotic motions of a restrained pipe conveying
fluid (Fig. 1). The pipe system considered by Jin is a fluid-conveying pipe restrained by motion-limiting
constraints, and a linear spring support is attached to it at the restrained point. Hence, Jin’s analytical model is
a modified pipe system if compared with the one analysed by Paidoussis et al. [2]. Jin studied the effect of the
spring constant and some other parameters on the dynamics of the system. Attention was concentrated on the
possible chaotic behaviour of the system which has been shown to occur in the case of no spring support [2].

It should be noted that the pipe is hanging vertically in Refs. [1,2]. However, the fluid-conveying pipes may
be standing in engineering practice (Fig. 2). For the cantilevered pipes conveying fluid, the linear dynamics has
been investigated by Paidoussis [3], both for the hanging and standing pipes (for the hanging system, the
gravity parameter g40; for the standing system, go0). In that linear work, there existed no motion-limiting
constraints, and some behaviour of the standing pipes obtained were shown to be different from that of the
hanging pipes, i.e. the standing system may become buckled with a low fluid velocity. Subsequently, Li and
Paidoussis [4] studied the nonlinear dynamics of pipes conveying fluid, in which the geometric nonlinearities
induced by large displacements were considered. In that nonlinear study [4], it was found that the effect of the
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Fig. 2. Schematic of the standing system treated in this paper.
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Fig. 1. Schematic of the hanging system treated in Ref. [1].
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gravity parameter on the dynamics of the pipe is significant. Furthermore, a double degeneracy was detected in
the parameter space of the standing system.

It might be stressed that, for the standing and hanging pipes, the dynamics (both linear and nonlinear
dynamics) show some differences between these two models while they have the same formulations of
equations of motion. In this note, a standing pipe conveying fluid subjected to elastic spring and motion-
limiting constraints is considered. As will be shown below, the dynamics of a restrained standing pipe displays
more interesting behaviour than that of a restrained hanging pipe.

As mentioned in the foregoing, the equation of motion of a standing system is the same as that of a hanging
system. However, for a hanging system, g40; for a standing system, go0. Moreover, it has been shown that,
for quantitatively more accurate results, the geometric nonlinearities in the pipe dynamics and at least a four-
degree-of-freedom analysis are needed [5]. Since the main purpose of this note is to investigate part of the
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qualitative behaviour of the restrained standing system, the only nonlinearity is associated with the restraints
and the two-mode expansion (N ¼ 2) is adopted in the analytical model for simplicity [1]. Thus, in this note we
use the following four-dimensional first-order ordinary differential equation of motion of the pipe which was
obtained by Jin [1] for the system of two-degree-of-freedom:

_X ¼ AXþ FðXÞ, (1)

where the dot denotes differentiation with respect to t, t ¼ ½EI=ðM þmÞ�1=2t
.

L2; EI is the flexural rigidity of
the pipe; M and m are the per-unit-length mass of the fluid and pipe, respectively; L is the length of the pipe, t

the time variable; and

X ¼ ðx1;x2;x3;x4Þ
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in which the coefficients cij, bij, eij and gij are defined in Ref. [1]; x is the longitudinal co-ordinate, xb ¼ xb=L;
u ¼ ðM=EIÞ1=2UL, U is the flow velocity of the fluid in the pipe; a ¼ ½EI=ðM þmÞ�1=2a=L2, b ¼M=ðM þmÞ,
g ¼ ðM þmÞgL3=EI , g is the acceleration due to gravity; k1 ¼ KL3=EI , k2 ¼ KL5=EI , where K1 and K2 are the
stiffnesses of the elastic spring and cubic spring, respectively; jr xð Þ ¼ cosh lrx� cos lrx� sr sinh lrx�ð

sin lrxÞ is the eigenfunction of the cantilever beam and lr represent the rth eigenvalues of the cantilever beam,

sr ¼ ½sinh lr � sin lr�=½cosh lr þ cos lr�.

It should be mentioned that K1 and K2 represent the effect of elastic support and motion-limiting constraints,
respectively. Hence, based on Eq. (1), the dynamics of the standing pipe can be obtained by using a fourth-
order Runge–Kutta integration algorithm, with a step size of 0.005; the initial conditions employed were
z1ð0Þ ¼ z2ð0Þ ¼ 0:001; z3ð0Þ ¼ z4ð0Þ ¼ 0.

As the main aim of the present work is to show the difference between the hanging and standing pipe
models, the dimensionless parameter, g, will be chosen to have a negative value (in this study g ¼ �10). Hence,
let some other key parameters as

b ¼ 0:2; a ¼ 0:005; xb ¼ 0:82; k2 ¼ 100; k1 ¼ 20 (2)

This set of system parameters defined in Eq. (2) was also utilized in Ref. [1]. In what follows, it is of interest
to investigate, in detail, what behaviour would occur when the dimensionless fluid velocity is varied for the
standing pipe. For this purpose, calculations have produced the bifurcation diagram of Fig. 3 for the system
parameters defined in Eq. (2). In this figure the displacement plotted in the ordinate is the amplitude of the
two-mode approximation of the free-end displacement of the pipe (tip displacement),

Zð1; tÞ ffi j1ð1Þx1ðtÞ þ j2ð1Þx2ðtÞ. (3)

It should be noted that the transient solutions were discarded in the calculations. As shown in Fig. 3, the
global dynamics of the standing pipe is similar to that of the restrained hanging pipe. When the fluid velocity is
low, the pipe is stable with zero displacement and no buckling is found. Similar to the conclusion obtained in
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Fig. 3. Bifurcation diagram for the tip displacement of a standing system defined by g ¼ �10, b ¼ 0:2; a ¼ 0:005; xb ¼ 0:82;
k2 ¼ 100; k1 ¼ 20.

Fig. 4. Bifurcation diagram for the tip displacement of a standing system defined by g ¼ �10, b ¼ 0:2; a ¼ 0:005; xb ¼ 0:82; k2 ¼ 100;
k1 ¼ 1.

Fig. 5. Phase portrait and time response for a buckling pipe, for the system of Fig. 4, and u ¼ 0.2.
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Ref. [4], a lower fluid velocity (uH) corresponding to a Hopf bifurcation can be detected via numerical
calculations. The Hopf bifurcation occurs at u ¼ uH � 5:5 for a restrained standing pipe, which is much lower
than that of a hanging pipe (in the hanging system uH � 6:8). Moreover, as can be seen in Fig. 3, the fluid
velocities corresponding to the pitchfork and the period-doubling bifurcations are also lower than those of the
restrained hanging pipe. Thus, a much lower fluid velocity can induce chaotic motions for the restrained
standing pipe.

Nevertheless, if the elastic spring constant is small (e.g. k1 ¼ 1) or even zero, the dynamics of the standing
pipe is much richer, as can be seen in Fig. 4. In this case, the standing system is buckled when u is low. This
may be caused by the weight of the fluid-conveying pipe itself. The corresponding phase portrait and time
response are shown in Fig. 5. This buckling phenomenon has also been found in the dynamics for the standing
pipes without restraints [3,4]. Then, increasing u causes the system to regain stability, subsequently to undergo
a limit cycle motion and finally to lead to chaos through period-doubling bifurcations. Moreover, it can be
seen in Fig. 4 that, a discontinuity (jump) arises in the parameter space of u, the nature of which is not
understood. This discontinuity indicates that the static deflection of the standing pipe may suddenly change
from a positive displacement to a negative one at a certain fluid velocity.

Note that the mass ratio b in this work is chosen to be b ¼ 0:2, this is just for a convenient comparison
between the hanging and standing systems. The standing pipe may convey air in engineering practice, thus the
corresponding mass ratio is very small. However, more extensive calculations show that a restrained standing
pipe conveying air behaves like the restrained pipe conveying fluid with a large mass ratio (e.g. b ¼ 0:2).

Thus, for a standing fluid-conveying pipe restrained by elastic support and motion-limiting constraints, its
dynamics is much richer than that of a restrained hanging pipe. For a large value of elastic spring stiffness (in
this study k1 ¼ 20), the global dynamics of the standing system is similar to that of a hanging system; but the
standing system is much easier to lose its stability in the parameter space of u. If, however, the stiffness of the
elastic spring is very small, the standing pipe may be subject to buckling when the fluid velocity is low, and a
discontinuity can be detected in the bifurcation diagram when the fluid velocity is chosen to be the variable
parameter.
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